Modeling and simulation of the cavitation phenomenon in space engine turbopumps

Joris Cazé

Directeurs de thèse : Fabien Petitpas, Eric Daniel

Référents CNES : Sébastien Le Martelot, Matthieu Queguineur

Joris Cazé

Summary

Introduction

Modeling of the cavitation phenomenon

- State-of-the-art
- Two-phase flow approach
- Two-phase flow model
- Blades motion

Numerical method

- Numerical scheme
- MRF fluxes
- Mesh mapping

Results

- Test case setup
- Single-phase flow behavior: pump characteristic
- Two-phase flow: cavitating regime

Conclusions & perspectives

Summary

Introduction

Modeling of the cavitation phenomenon

- State-of-the-art
- Two-phase flow approach
- Two-phase flow model
- Blades motion

Numerical method

- Numerical scheme
- MRF fluxes
- Mesh mapping

Results

- Test case setup
- Single-phase flow behavior: pump characteristic
- Two-phase flow: cavitating regime

Conclusions & perspectives

Introduction: overview

Fig – Vulcain gas generator cycle

Joris Cazé

Introduction: turbopump

Introduction: cavitation

No cavitation or moderate cavitation

Strong cavitation

Mechanical instabilities Performance drop

Fig – Cavitation on SSME LOx inducer [Braisted, 1980]

Introduction: objectives

Fig – Illustration of a liquid propellant tank

Fig – Experimental performance curve on a centrifugal pump [Franz *et al.*, 1989]

Introduction: cavitation modeling

Fig – Cloud cavitation on hydrofoil (left) - Bubble cavitation on propeller (right) [Franc and Michel, 1995]

Cavitation characteristics:

- Two-phase flow
- Phase change
- (in)compressible regions

• 3D

Pump characteristic:

• Rotor motion

Summary

Introduction

Modeling of the cavitation phenomenon

- State-of-the-art
- Two-phase flow approach
- Two-phase flow model
- Blades motion

Numerical method

- Numerical scheme
- MRF fluxes
- Mesh mapping

Results

- Test case setup
- Single-phase flow behavior: pump characteristic
- Two-phase flow: cavitating regime

Conclusions & perspectives

Modeling: state-of-the-art

Bubble dynamics

Rayleigh-Plesset equation

$$R \frac{\mathrm{d}^2 R}{\mathrm{d}t^2} + \frac{3}{2} \left(\frac{\mathrm{d}R}{\mathrm{d}t}\right)^2 + \frac{2\sigma}{R} = \frac{p_v - p}{\rho_l}$$

$$\dot{\nabla} \dot{m} = \pm N 4 \pi R^2 \rho_v \sqrt{\frac{2}{3} \frac{p_v - p}{\rho_l}}$$

Empirical correction coefficients

[Singhal et al., 2002] [Zhang et al., 2019]

Joris Cazé

Modeling: state-of-the-art

Barotropic EOS

- Homogeneous model
- 3D RANS \rightarrow FINETM/Turbo code

$$\rho = \alpha_v \rho_v + (1 - \alpha_v) \rho_l$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$
$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u} + p\boldsymbol{I}) = \nabla \cdot \boldsymbol{\tau} + \rho \boldsymbol{F}$$

$$\rho = \rho(p) = \frac{\rho_l + \rho_v}{2} + \frac{\rho_l - \rho_v}{2} \sin\left(\frac{p - p_v}{c_{min}^2} \frac{2}{\rho_l - \rho_v}\right)$$

- Fig Barotropic state law $\rho(p)$ for water from [Coutier-Delgosha *et al.*, 2005]
 - here was to define mass transfer
 - Better thermodynamic behavior with the added energy equation [Goncalves *et al.*, 2010]

Modeling: two-phase flow approach

- Hyperbolic model → waves propagation
- Able to handle several interface types L/V or others (multi-species, non-condensable gases)

- Complete thermodynamic description for each phase
- Taking into account the thermodynamic equilibrium

Phase

change

Modeling: two-phase flow model

Velocity equilibrium model ($u_1 = u_2$) Used to study cavitating flow [Petitpas *et al.*, 2011] For two-phase flow k = 1, 2:

$$\partial_{t}\alpha_{1} + \nabla \cdot (\alpha_{1}u) - \alpha_{1}\nabla \cdot u = \mu(p_{1} - p_{2}) + \frac{\dot{m}/\rho_{I}}{\nu(g_{2} - g_{1})/\rho_{I}} + \underbrace{e_{k} = e_{k}(\rho_{k}, p_{k})}_{e_{k} = e_{k}(\rho_{k}, p_{k})}$$

$$\partial_{t}(\alpha_{k}\rho_{k}) + \nabla \cdot (\alpha_{k}\rho_{k}u) = \pm_{k}\underline{m}_{\nu(g_{2} - g_{1})}$$

$$\partial_{t}(\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla(\alpha_{1}p_{1} + \alpha_{2}p_{2}) = \mathbf{0}$$

$$\nu(g_{2} - g_{1})$$

$$\partial_{t}(\alpha_{k}\rho_{k}e_{k}) + \nabla \cdot (\alpha_{k}\rho_{k}e_{k}u) + \alpha_{k}p_{k}\nabla \cdot u = \mp_{k}\mu p_{I}(p_{1} - p_{2}) \pm_{k}h\underline{m} \pm_{k}\underline{\dot{Q}}$$

$$\theta(T_{2} - T_{1})$$

$$\partial_{t}U + \nabla \cdot F(U) + H(U)\nabla \cdot u = R(U)$$
[Kapila *et al.*, 2000
[Saurel *et al.*, 2009]

Thesis defense

FOS

Modeling: thermodynamical closure

Fig – Typical phase diagram (p, v)

- Each phase is governed by its Equation Of State (EOS)
- EOS

 \neq Van Der Waals

- Stiffened Gas
- Noble-Abel Stiffened Gas
- Calibration of EOS parameters based on experimental saturation curve [Le Métayer *et al.*, 2004] [Le Métayer *et al.*, 2016]

Repulsive short distance effects

Modeling: thermodynamical closure

Joris Cazé

Thesis defense

Modeling: blades motion

Moving Reference Frame (MRF) method [Combrinck and Dala, 2014] Lagrangian derivation based on classical point mechanics

Change of reference frame: inertial one \rightarrow rotating one Rotationnal effects: centrifugal force & Coriolis force

Euler equations:

$$\partial_t \rho + \nabla \cdot \rho \boldsymbol{u}_r = 0$$

$$\partial_t \rho \boldsymbol{u}_r + \nabla \cdot (\rho \boldsymbol{u}_r \otimes \boldsymbol{u}_r + pI) = -2 \rho \boldsymbol{\Omega} \wedge \boldsymbol{u}_r - \rho \boldsymbol{\Omega} \wedge (\boldsymbol{\Omega} \wedge \boldsymbol{x})$$

$$\rightarrow \partial_t \rho E_r + \nabla \cdot ((\rho E_r + p) \boldsymbol{u}_r) = -\rho \boldsymbol{u}_r \cdot (\boldsymbol{\Omega} \wedge (\boldsymbol{\Omega} \wedge \boldsymbol{x}))$$

$$E_r = e + \frac{1}{2} \boldsymbol{u}_r^2$$

 $u = u_r + \Omega \times r$

[**Cazé** *et al.*, 2022]

Modeling: blades motion

Change of reference frame: inertial one \rightarrow rotating one Rotationnals effects: centrifugal force & Coriolis force

Two-phase flow model:

$$\partial_{t}\alpha_{1} + \boldsymbol{u}_{r} \cdot \nabla \alpha_{1} = \mu(p_{1} - p_{2}) + \frac{\dot{m}}{\rho_{I}}$$
$$\partial_{t}(\alpha_{k}\rho_{k}) + \nabla \cdot (\alpha_{k}\rho_{k}\boldsymbol{u}) = \pm_{k}\dot{m}$$
$$\partial_{t}(\rho\boldsymbol{u}_{r}) + \nabla \cdot (\rho\boldsymbol{u}_{r} \otimes \boldsymbol{u}_{r}) + \nabla(\alpha_{1}p_{1} + \alpha_{2}p_{2}) = -2\rho\boldsymbol{\Omega} \wedge \boldsymbol{u}_{r} - \rho\boldsymbol{\Omega} \wedge (\boldsymbol{\Omega} \wedge \boldsymbol{x})$$
$$\partial_{t}(\alpha_{k}\rho_{k}e_{k}) + \nabla \cdot (\alpha_{k}\rho_{k}e_{k}\boldsymbol{u}_{r}) + \alpha_{k}p_{k}\nabla \cdot \boldsymbol{u}_{r} = \mp_{k}\mu p_{I}(p_{1} - p_{2}) \pm_{k}(\dot{Q} + h_{I}\dot{m})$$
$$\partial_{t}\rho E_{r} + \nabla \cdot \left((\rho E_{r} + p)\boldsymbol{u}_{r}\right) = -\rho\boldsymbol{u}_{r} \cdot \left(\boldsymbol{\Omega} \wedge (\boldsymbol{\Omega} \wedge \boldsymbol{x})\right)$$

$$E_r = e + \frac{1}{2}u_r^2$$
 $e = Y_1e_1 + Y_2e_2$

Ω X

 $u = u_r + \Omega \times r$ [Cazé et al., 2022]

Summary

Introduction

Modeling of the cavitation phenomenon

- State-of-the-art
- Two-phase flow approach
- Two-phase flow model
- Blades motion

Numerical method

- Numerical scheme
- MRF fluxes
- Mesh mapping

Results

- Test case setup
- Single-phase flow behavior: pump characteristic
- Two-phase flow: cavitating regime

Conclusions & perspectives

Numerical method: Overview

Solving $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = R(U) + S(U)$ using FV method:

- 1. Homogeneous system with Godunov's scheme $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = 0$
- 2. Source step $\partial_t U = S(U)$
- 3. Phase change $\partial_t U = R_{pTg}(U)$

[Schmidmayer *et al.*, 2020] & [Schmidmayer, **Cazé** *et al.*, 2022]

Numerical method: numerical scheme

Solving $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = R(U) + S(U)$ using FV method:

1. Homogeneous system with Godunov's scheme $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = 0$

$$\boldsymbol{U_{i}^{n+1}} = \boldsymbol{U_{i}^{n}} - \frac{\Delta t}{V_{i}} \left(\boldsymbol{\Sigma}_{s=1}^{N_{s}} \boldsymbol{A}_{s} \boldsymbol{F_{s}^{*}} \cdot \boldsymbol{n}_{s} \right) - \frac{\Delta t}{V_{i}} H(\boldsymbol{U_{i}^{n}}) \left(\boldsymbol{\Sigma}_{s=1}^{N_{s}} \boldsymbol{A}_{s} \boldsymbol{u}_{s}^{*} \cdot \boldsymbol{n}_{s} \right)$$

with $F_s^* = RP(U_i^n, U_j^n)$ using approximate Riemann solver

Numerical method: numerical scheme

Solving $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = R(U) + S(U)$ using FV method:

- 1. Homogeneous system with Godunov's scheme $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = 0$
- 2. Source step $\partial_t U = S(U)$

Take into account Moving Reference Frame terms

$$\boldsymbol{U}_i^{n+1} = \widetilde{\boldsymbol{U}_i^n} + \Delta t \, \boldsymbol{S}(\boldsymbol{U}_i^n)$$

or RK2, RK4 scheme

Numerical method: numerical scheme

Solving $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = R(U) + S(U)$ using FV method:

- 1. Homogeneous system with Godunov's scheme $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = 0$
- 2. Source step $\partial_t U = S(U)$
- 3. Phase change $\partial_t U = R_{pTg}(U)$

$$\begin{aligned} \partial_t \alpha_1 &= \mu (p_1 - p_2) + \nu (g_2 - g_1) / \rho_I \\ \partial_t (\alpha_k \rho_k) &= \pm_k \nu (g_2 - g_1) \\ \partial_t (\rho \mathbf{u}) &= \mathbf{0} \\ \partial_t (\alpha_k \rho_k e_k) &= \mp_k \mu p_I (p_1 - p_2) \pm_k h_I \nu (g_2 - g_1) \pm_k \theta (T_2 - T_1) \end{aligned}$$

Evaluation of mass transfer terms by relaxation processes

Thermodynamic problem of return to equilibrium

with $\mu, \nu, \theta \rightarrow \infty$

Joris Cazé

Numerical method: OD phase change validation

Joris Cazé

Thesis defense

Numerical method: MRF fluxes

Model in compact form: $\partial_t U + \nabla \cdot F(U) + \Sigma(U) = R(U) + S_{MRF}(U)$

Numerical method: MRF fluxes

Numerical method: mesh mapping

@ Reduce computation time

Numerical method: mesh mapping

Fine mesh to initialize

Search for the closest cell in each partition of the coarse mesh

Numerical method: mesh mapping validation

Test	Mesh	Setup	CPUs	$t_{ m simu}/t_{ m réf}$	$t_{ m tot}/t_{ m réf}$
1	1000	Normal	1	1	1
2	10 000	Normal	10	15	15
3	10 000	Mapping on 1	10	8	9

Summary

Introduction

Modeling of the cavitation phenomenon

- State-of-the-art
- Two-phase flow approach
- Two-phase flow model
- Blades motion

Numerical method

- Numerical scheme
- MRF fluxes
- Mesh mapping

Results

- Test case setup
- Single-phase flow behavior: pump characteristic
- Two-phase flow: cavitating regime

Conclusions & perspectives

Results: test case setup

- 3 bladed-inducer
- Variable section hub
- Experimental data from

Thesis defense

Results: mesh convergence

Thesis defense

Results: mesh convergence

Results: mesh convergence

Mesh (millions)	1.527	2.543					
Number of CPUs	160	256					
Computation time (h)	152	157					
CPU time (h)	24440	40192					
Trade-off between computationnal							
ressources / error							

Summary

Introduction

Modeling of the cavitation phenomenon

- State-of-the-art
- Two-phase flow approach
- Two-phase flow model
- Blades motion

Numerical method

- Numerical scheme
- MRF fluxes
- Mesh mapping

Results

- Test case setup
- Single-phase flow behavior: pump characteristic
- Two-phase flow: cavitating regime

Conclusions & perspectives

Thesis defense

Flow rate variation \dot{m}/\dot{m}_n

Pressures are overestimated but the inlet/outlet gap is relatively constant except at low massflow rate

Overpressure error

Fig – Illustration of backflow cavitation [Brennen, 2011]

Fig – Backflow cavitation on SSME LOx inducer [Braisted, 1980]

Cavitation at blade tip

Joris Cazé

Overpressure error

Joris Cazé

Study of pressure field

Blades load

 $\dot{m} = 1 \times \dot{m}_n$

100

80

Blades load

Summary

Introduction

Modeling of the cavitation phenomenon

- State-of-the-art
- Two-phase flow approach
- Two-phase flow model
- Blades motion

Numerical method

- Numerical scheme
- MRF fluxes
- Mesh mapping

Results

- Test case setup
- Single-phase flow behavior: pump characteristic
- Two-phase flow: cavitating regime

Conclusions & perspectives

Performance curve

• Variation of the outlet pressure at \dot{m}_n

• $\Psi = \frac{\Delta p}{\rho_l \omega^2 r_b^2}$

•
$$\tau = \frac{p_e^{tot} - p_v}{\rho_l \omega^2 r_b^2}$$

Cavitation pockets

Joris Cazé

Thesis defense

Cavitation number estimates

Increase massflow rate $\dot{m} = 1.15 \times \dot{m}_n$

Increase massflow rate $\dot{m} = 1.15 \times \dot{m}_n$

Blades load with/without cavitation

Blades load on two cavitation regimes

Joris Cazé

Thesis defense

Summary

Introduction

Modeling of the cavitation phenomenon

- State-of-the-art
- Two-phase flow approach
- Two-phase flow model
- Blades motion

Numerical method

- Numerical scheme
- MRF fluxes
- Mesh mapping

Results

- Test case setup
- Single-phase flow behavior: pump characteristic
- Two-phase flow: cavitating regime

Conclusions & perspectives

Conclusions & perspectives

Conclusions

- Two-phase flow model written in a rotating frame
- Phase change based on thermodynamics
- Good estimation of an inducer behavior in noncavitating regime
- Assessment of the performance breakdown in cavitating regime

Two-phase flow model able to capture cavitation pockets in turbopumps

Perspectives

- Improve performance breakdown
 - Gap between the casing and the blades?
 - Flow temperature?
 - 2nd order numerical scheme?
 - Low-Mach preconditionning?
 - Turbulence?
- Study of the thermodynamic effect responsible of a delay on the cavitation phenomenon

References

[Franz *et al.*, 1989] Franz, R., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1989) The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation.

[Braisted, 1980] Braisted D. M. (1980) Cavitation induced instabilities associated with turbomachines. *California Institute of Technology press.*

[Franc and Michel, 1995] J-P. Franc and J-M. Michel (1995) La cavitation : mécanismes physiques et aspects industriels. *Presses universitaires de Grenoble.*

[Coutier-Delgosha *et al.*, 2005] Coutier-Delgosha, O., Morel, P., Fortes-Patella, R., & Reboud, J. L. (2005) Numerical simulation of turbopump inducer cavitating behavior. *International Journal of Rotating Machinery*, 2005(2), 135-142.

[Goncalves *et al.*, 2010] Goncalves, E., Fortes Patella, R., Rolland, J., Pouffary, B., & Challier, G. (2010) Thermodynamic effect on a cavitating inducer in liquid hydrogen *Journal of fluids engineering* 132.11

[Singhal *et al.*, 2002] Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y. (2002) Mathematical basis and validation of the full cavitation model. *J. Fluids Eng.*, *124*(3), 617-624.

[Zhang et al., 2019] Zhang, Y., Ren, X., Wang, Y., Li, X., Ito, Y., & Gu, C. (2019) Investigation of the cavitation model in an inducer for water and liquid nitrogen. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(19-20), 6939-6952.

[Baer and Nunziato, 1986] Baer, M. and Nunziato, J. (1986) A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials. International journal of multiphase flow, 12(6) :861–889.

[Kapila *et al.*, 2000] Kapila, A. K., Menikoff, R., Bdzil, J. B., Son, S. F., & Stewart, D. S. (2000). Two-phase modeling of ddt in granular materials: Reduced equations. *Technical Report, LA-UR-99-3329, Los Alamos National Laboratory, USA.*

[Saurel et al., 2009] Saurel, R., Petitpas, F., and Berry, R. A. (2009) Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5) :1678–1712. [Petitpas et al., 2011] Petitpas, F., Saurel, R., Ahn, B. K., & Ko, S. (2011). Modelling cavitating flow around underwater missiles. *International Journal of Naval Architecture and Ocean Engineering*, *3*(4), 263-273.

[Le Métayer et al., 2004] Le Métayer, O., Massoni, J., Saurel, R. (2004) Elaboration des lois d'état d'un liquide et de sa vapeur pour les modèle d'écoulements diphasiques. International journal of thermal sciences 43.3, p. 265-276.

[Le Métayer et al., 2016] Le Métayer, O., & Saurel, R. (2016). The Noble-Abel stiffened-gas equation of state. *Physics of Fluids*, 28(4), 046102.

[Combrinck and Dala, 2014] Combrinck, M., and Dala, L. (2014) Eulerian derivations of non-inertial navier-stokes equations 29th Congr. Int. Counc. Aeronaut. Sci, 577.

[Cazé et al., 2022] Cazé, J., Petitpas, F., Daniel, E., Le Martelot, S., Queguineur, M. (2022). Modeling and simulation of a turbopump flow: a multiphase approach. ASME Turbo Expo 2022 - Turbomachinery Technical Conference and Exposition, Rotterdam.

[Schmidmayer *et al.*, 2020] Schmidmayer, K., Petitpas, F., Le Martelot, S., Daniel, E. (2020). ECOGEN: An open-source tool for multiphase, compressible, multiphysics flows. *Computer Physics Communications*, *251*, *107093*.

[Schmidmayer, Cazé et al., 2022] K. Schmidmayer, J. Cazé, F. Petitpas, E. Daniel, N. Favrie (2022) Modelling interactions between waves and diffused interfaces International Journal of Multiphase Flow.

[Brennen, 2011] Brennen, C. E. (2011). Hydrodynamics of pumps. *Cambridge University Press.*

[Chivers, 1969] Chivers, T. C. (1969).

First Paper: Temperature Effects on Cavitation in a Centrifugal Pump: Theory and Experiment. *Proceedings of the Institution of Mechanical Engineers, 184(1), 37-47.*

Joris Cazé

Thank you for your attention

Thermodynamic effect

Fig – Performance curve of a water centrifugal pump [Chivers, 1969]

Two-phase flow model based on total energy equations

Internal energy formulation

 $\partial_t \alpha_1 + \nabla \cdot (\alpha_1 u) - \alpha_1 \nabla \cdot u = \mu (p_1 - p_2)$

 $\partial_t(\alpha_k\rho_k) + \nabla \cdot (\alpha_k\rho_k \boldsymbol{u}) = 0$

 $\partial_t(\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla (\alpha_1 p_1 + \alpha_2 p_2) = \boldsymbol{0}$

 $\partial_t (\alpha_1 \rho_1 e_1) + \nabla \cdot (\alpha_1 \rho_1 e_1 \boldsymbol{u}) + \alpha_1 p_1 \nabla \cdot \boldsymbol{u} = -\mu p_I (p_1 - p_2)$ $\partial_t (\alpha_2 \rho_2 e_2) + \nabla \cdot (\alpha_2 \rho_2 e_2 \boldsymbol{u}) + \alpha_2 p_2 \nabla \cdot \boldsymbol{u} = +\mu p_I (p_1 - p_2)$

Total energy formulation

$$\partial_t (\alpha_1 \rho_1 E_1) + \nabla \cdot (\alpha_1 \rho_1 E_1 u + \alpha_1 p_1 u) + \Sigma (\boldsymbol{U}, \nabla \boldsymbol{U}) = -\mu p_I (p_1 - p_2) \\ \partial_t (\alpha_2 \rho_2 E_2) + \nabla \cdot (\alpha_2 \rho_2 E_2 u + \alpha_2 p_2 u) - \Sigma (\boldsymbol{U}, \nabla \boldsymbol{U}) = +\mu p_I (p_1 - p_2)$$

Total mixture energy conservation

[Pelanti and Shyue, 2014]

Moving Reference Frame method

